Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Food Sci ; 8: 100720, 2024.
Article in English | MEDLINE | ID: mdl-38559379

ABSTRACT

In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.

2.
Food Chem X ; 22: 101349, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38623512

ABSTRACT

Edible coatings on fruits and vegetables preserve postharvest quality by reducing water loss and lowering respiration, and metabolic activities. The primary objectives of this study were to develop composite coating formulations using natural waxes (carnauba and shellac wax), eugenol nanoemulsion, and Aloe vera gel, and assess the potential impacts of the coating formulations on the postharvest quality and shelf-life of the Kaji lemon. The results show that eugenol nanoemulsion and Aloe vera gel enhanced the physico-chemical, antimicrobial and antioxidant properties of the developed coating. Notably, the fruits coated with optimized nanocomposite of wax with eugenol and aloe vera gel inclusion (SW + CW/EuNE-20/AVG-2) showed the lowest weight loss (16.56%), while the coatings of wax with only aloe vera gel (SW + CW/AVG-2) exhibited the highest firmness (48 N), in contrast to the control fruit, which had 27.33% weight loss and 9.6 N firmness after 28 days of storage, respectively.

3.
Int J Biol Macromol ; 162: 685-692, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32585271

ABSTRACT

The effect of 1-butyl-3-methylimidazolium chloride (BMIMCl) as a plasticizer on sol-gel phase transition, rheological, and physical properties of high amylose rice starch was studied. The inter-relationships of parameters were determined using principal component analysis. The sol-gel phase transition temperature and storage modulus of starch was varied significantly (p ≤ 0.05) in the presence of BMIMCl. The sol-gel phase transition temperature of native starch was varied between 53.99 and 39.7 °C, whereas, for starch with ionic liquid varied between 49.50 and 40.6 °C. The changes in storage modulus (G') during the sol-gel phase transition were suitable with first order kinetics. The temperature dependent rheology of starch during the sol-gel phase transition was efficiently (0.93 ≤ R2 ≤ 0.98) explained using the Arrhenius model. The thermal stability of the gel was improved in the presence of BMIMCl. The textural and electrical properties of the gel were significantly affected by the presence of BMIMCl. The inter-relationships between the parameters were developed and the initial temperature, resistance, and storage modulus showed a strong interrelation.


Subject(s)
Amylose/analysis , Gels/chemistry , Ionic Liquids/chemistry , Oryza/chemistry , Starch/chemistry , Kinetics , Phase Transition , Rheology , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...